1. $\int \frac{d x}{x^{2}+4 x+3}$
2. $\int \frac{d x}{x^{2}+8 x+7}$
3. $\int \frac{x}{x^{2}-5 x+6} d x$
4. $\int \frac{5 x-4}{x^{2}-4 x} d x$
5. $\int \frac{11 x+17}{2 x^{2}+7 x-4} d x$
6. $\int \frac{5 x-5}{3 x^{2}-8 x-3} d x$
7. $\int \frac{d x}{x\left(x^{2}-1\right)}$
8. $\int \frac{2 x^{2}-9 x-9}{x^{3}-9 x} d x$
9. $\int \frac{2 x^{2}+4 x-8}{x^{3}-4 x} d x$
10. $\int \frac{x^{2}+2}{x+2} d x$
11. $\int \frac{x^{2}-4}{x-1} d x$
12. $\int \frac{3 x^{2}-10}{x^{2}-4 x+4} d x$
13. $\int \frac{x^{2}}{x^{2}-3 x+2} d x$
14. $\int \frac{x^{3}}{x^{2}-3 x+2} d x$
15. $\int \frac{x^{3}}{x^{2}-x-6} d x$
16. $\int \frac{x^{5}+2 x^{2}+1}{x-x^{3}} d x$

AP Calculus BC
Section 8.4 - Partial Fractions (Anton)
Evaluate the following integrals.

1. $\int \frac{d x}{x^{2}+\underset{4}{2} x+\frac{4}{3}}=\int \frac{-1 / 2}{x+3}+\frac{1 / 2}{x+1} d x$
2. $\begin{aligned} \int \frac{d x}{x^{2}+8 x+7} & =\int \frac{-1 / 6}{x+7}+\frac{116}{x+1} d x \\ (x+7)(x+1) & \text { } \begin{aligned} x & \\ & =\frac{1}{6} \ln |x+1|-\frac{1}{6} \ln |x+7|+C \\ & =\frac{1}{6} \ln \left|\frac{x+1}{x+7}\right|+C\end{aligned}, r l\end{aligned}$
3. $\int \frac{x}{x^{2}-5 x+6} d x=\int \frac{-2}{x-2}+\frac{3}{x-3} d x$

$$
\begin{aligned}
(x-2)(x-3) & =3 \ln |x-3|-2 \ln |x-2|+c
\end{aligned}
$$

4. $\int \frac{5 x-4}{x^{2}-4 x} d x=\int \frac{1}{x}+\frac{4}{x-4} d x$

$$
x(x-4)=\ln |x|+4 \ln |x-4|+c
$$

5. $\int \frac{11 x+17}{2 x^{2}+7 x-4} d x=\int \frac{5}{2 x-1}+\frac{3}{x+4} d x$

$$
(2 x-1)(x+4)
$$

$$
=\frac{5}{2} \ln |2 x-1|+3 \ln |x+4|+c
$$

6. $\int \frac{5 x-5}{3 x^{2}-8 x-3} d x=\int \frac{2}{3 x+1}+\frac{1}{x-3} d x$

$$
\begin{aligned}
(3 x+1 x x-3) & \\
& =\frac{2}{3} \ln |3 x+1|+\ln |x-3|+C
\end{aligned}
$$

7. $\int \frac{d x}{x\left(x^{2}-1\right)}=\int \frac{-1}{x}+\frac{1 / 2}{x-1}+\frac{1 / 2}{x+1} d x$

$$
\begin{aligned}
x(x-1)(x+1) & =\frac{1}{2} \ln |x-1|+\frac{1}{2} \ln |x+1|-\ln |x|+c \\
& =\frac{1}{2} \ln \left|x^{2}-1\right|-\ln |x|+c
\end{aligned}
$$

8. $\int \frac{2 x^{2}-9 x-9}{x^{3}-9 x} d x=\int \frac{1}{x}+\frac{-1}{x-3}+\frac{2}{x+3} d x$

$$
x(x-3)(x+3)
$$

AP Calculus BC
Section 8.4 - Partial Fractions (Anton)
9. $\int \frac{2 x^{2}+4 x-8}{x^{3}-4 x} d x=\int \frac{2}{x}+\frac{1}{x-2}+\frac{-1}{x+2}$

$$
x(x-2)(x+2)
$$

$$
=\sqrt{2 \ln |x|+\ln |x-2|-\ln |x+2|+c}
$$

10. $\int \frac{x^{2}+2}{x+2} d x=\int x-2+\frac{6}{x+2} d x$

$$
\frac{x-2}{x+2 \sqrt{x^{2}+0 x+2}}=\frac{1}{2} x^{2}-2 x+6 \ln |x+2|+c
$$

$$
\frac{x^{2}+2 x}{-2 x+2}
$$

$$
\frac{-2 x-4}{6}
$$

$$
\frac{x+1}{x - 1 \longdiv { x ^ { 2 } + 0 x - 4 } \quad \frac { 1 } { 2 } x ^ { 2 } + x - 3 \operatorname { l n } | x - 1 | + C}
$$

$$
\begin{aligned}
& \text { 12. } \int \frac{3 x^{2}-10}{x^{2}-4 x+4} d x=\int 3+\frac{12 x-22}{(x-2)^{2}} d x \\
& x^{2}-4 x+4 \sqrt{3 x^{2}+0 x-10} \mid=\int 3+\frac{x^{12}}{x-2}+\frac{x^{2}}{(x-2)^{2}} \\
& \frac{3 x-12 x+12}{}=3 x+12 \ln |x-2|-\frac{2}{x-2}+c
\end{aligned}
$$

$$
A(x-2)+B=12 x-22
$$

$$
x=3: A+2=14 \Rightarrow A=12
$$

13. $\int \frac{x^{2}}{x^{2}-3 x+2} d x=\int 1+\frac{3 x-2}{(x-2)(x-1)} d x$

$$
\text { 14. } \int \frac{x^{3}}{x^{2}-3 x+2} d x=\int x+3+\frac{7 x-6}{(x-2)(x-1)} d x
$$

$$
x^{2}-3 x+2 \frac{1}{\frac{x^{2}+0 x+0}{3 x-2}}=\int 1+\frac{4}{x-2}+\frac{-1}{x-1} d x
$$

$$
=x+4 \ln |x-2|-\ln |x-1|+c
$$

15. $\int \frac{x^{3}}{x^{2}-x-6} d x=\int x+1+\frac{7 x+6}{(x-3)(x+2)}$
16. $\int \frac{x^{5}+2 x^{2}+1}{x-x^{3}} d x=\int-x^{2}-1+\frac{2 x^{2}+x+1}{x(1-x)(1+x)} d x$

$$
\begin{aligned}
& \frac{x^{2}-x-6 \left\lvert\, \frac{x+1}{x^{3}+0 x^{2}+0 x+0}\right.}{\frac{x^{3}-x^{2}-6 x}{x^{2}+6 x+0}} \frac{x^{2}-x-6}{x}=\int x+1+\frac{27 / 5}{x-3}+\frac{8 / 5}{x+2} d x \\
& \left.\frac{1}{2} x^{2}+x+\frac{27}{5} \ln |x-3|+\frac{8}{5} \ln |x+2| \right\rvert\,
\end{aligned}
$$

$$
-x^{3}+x \sqrt[-x^{2}-1]{x^{5}+0 x^{4}+0 x^{3}+2 x^{2}+0 x+1} \int-x^{2}-1+\frac{1}{x}+\frac{2}{1-x}+\frac{-1}{1+x} d x
$$

$$
\frac{x^{5}-x^{3}}{\frac{x^{3}+2 x^{2}+0 x+1}{2 x^{2}+x+1}}\left[\begin{array}{l}
-\frac{1}{3} x^{3}-x+\ln |x| \\
-2 \ln |1-x|-\ln |1+x| \\
+c
\end{array}\right]
$$

